CD9 participates in endothelial cell migration during in vitro wound repair.
نویسندگان
چکیده
CD9, a widely expressed membrane protein of the tetraspanin family, has been implicated in diverse functions, such as signal transduction, cell adhesion, and cell motility. We tested the effects of an anti-CD9 monoclonal antibody (ALMA.1) on the migration and proliferation of human vascular endothelial cells (ECs) during repair of an in vitro mechanical wound mimicking angiogenic processes. ALMA.1 induced dose-dependent inhibition of wound repair with a 35+/-1.5% decrease at 20 microg/mL. Only cell migration was affected, because the rate of proliferation of ECs at the lesion margin was not modified and because the inhibition of repair was also observed for nonproliferating irradiated ECs. Monoclonal antibodies against CD63 tetraspanin (H5C6) and control mouse IgG (MOPC-21) were inactive. CD9, one of the most abundant proteins at the surface of ECs, colocalized with beta(1) or beta(3) integrins on EC membranes in double-labeling immunofluorescence experiments with ALMA.1 and an anti-beta(1) (4B4) or anti-beta(3) (SDF.3) monoclonal antibody. Moreover, ALMA.1 and 4B4 had additive inhibitory effects on lesion repair, whereas 4B4 alone also inhibited EC proliferation. In transmembrane Boyden-type assays, ALMA.1 induced dose-dependent inhibition of EC migration toward fibronectin and vitronectin with 45+/-6% and 31+/-10% inhibition, respectively, at 100 microg/mL. 4B4 inhibited migration toward fibronectin at 10 microg/mL but had no effect in the case of vitronectin. Adhesion of ECs to immobilized anti-CD9 monoclonal antibodies induced tyrosine-phosphorylated protein levels similar to those observed during interactions with beta(1) or beta(3) integrins. These results point to the involvement of CD9 in EC adhesion and migration during lesion repair and angiogenesis, probably through cooperation with integrins. As such, CD9 is a potential target to inhibit angiogenesis in metastatic and atherosclerotic processes.
منابع مشابه
Downregulation of CD9 in Keratinocyte Contributes to Cell Migration via Upregulation of Matrix Metalloproteinase-9
Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and p...
متن کاملHypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway
Keratinocyte migration is an early event in the wound healing process. Although we previously found that CD9 downregulation is required for the keratinocyte migration during wound repair, the mechanism of how CD9 expression is regulated remains unclear. Here, we observed the effect of hypoxia (2% O2) on CD9 expression and keratinocyte migration. CD9 expression was downregulated and keratinocyte...
متن کاملTetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells.
Members of the tetraspanin protein family are modulators of several fundamental cellular processes in various cell types. However, expression and function of these proteins have not been studied in microvascular endothelial cells despite their (patho-)physiological importance. Western blotting, FACS or RT-PCR analyses confirmed that CD9 and other tetraspanins are expressed in immortalized micro...
متن کاملAnti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملThymosin alpha 1 stimulates endothelial cell migration, angiogenesis, and wound healing.
In wound healing, lymphoid cells release soluble factors that attract fibroblasts and macrophages, initiating repair, endothelial cell migration, angiogenesis, and matrix production. We analyzed the effect of thymosin alpha1 (Talpha1) on endothelial cell migration, angiogenesis, and wound healing. Talpha1, a 28 amino acid peptide initially isolated from the thymus, enhanced the morphologic diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2000